GET A QUOTE
/ {{languageFlag}}
Select Language
{{item.label}}
/ {{languageFlag}}
Select Language
{{item.label}}

What is Sputtering?

Sputtering is a process that uses gaseous plasma to dislodge atoms from the surface of a solid target material. The atoms are deposited to form an extremely thin coating on the surface of the substrates. It is a technique often used to deposit thin films of semiconductors, CDs, disk drives, and optical devices. Sputtered films exhibit excellent uniformity, density, purity and adhesion. It is possible to produce alloys of precise composition with conventional sputtering, or oxides, nitrites and other compounds by reactive sputtering.

Process of sputtering:

  1. Ions of inert gas are accelerating into target
  2. Target is eroded by the ions via energy transfer and is ejected in the form of neutral particles
  3. Neutral particles from the target traverse and are deposited as a thin film onto the surface of the substrates

process of sputtering

About the author

Chin Trento

Chin Trento holds a bachelor’s degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years in Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thought On "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *

Related News & Articles

MORE >>
Understanding Catalyst Poisoning in Precious Metal Catalysts: Causes, Problems, and Solutions

this blog will discuss in detail the mechanisms and applications of precious metal catalysts, examine the causes and effects of catalyst poisoning, and propose measures to enhance their anti-poisoning capabilities and service life.

READ MORE >
A Closer Look at Piezoelectric Crystal

The discovery and application of piezoelectric crystals such as quartz, lithium niobate, and lithium tantalate have not only profoundly influenced the direction of modern scientific and technological progress but also demonstrated the great potential of materials science in solving real-world problems.

READ MORE >
D33 Values in Piezoelectric Crystals: Implications for Practical Applications

Discover how d33 values in piezoelectric crystal materials influence their efficiency and performance in practical applications, including sensors, actuators, and energy harvesters. This article delves into the factors affecting d33 and its critical role in optimizing piezoelectric technologies.

READ MORE >
Leave A Message
Leave A Message
* Your Name:
* E-mail:
* Product name:
* Phone Number:
* Message: