Products
  • Products
  • Categories
  • Blog
  • Podcast
  • Application
  • Document
|
GET A QUOTE
/ {{languageFlag}}
Select Language
Stanford Advanced Materials {{item.label}}
Stanford Advanced Materials
/ {{languageFlag}}
Select Language
Stanford Advanced Materials {{item.label}}

What Are the Ceramic Substrate Materials Used in Electronic Packaging?

In the process of electronic packaging, the substrate mainly plays the role of mechanical support protection and electrical interconnection (insulation). With the development of electronic packaging technology towards miniaturization, high density, multi-function, and high reliability, the power density of the electronic system increases, and the heat dissipation problem become more and more serious. There are many factors influencing the heat dissipation of devices, among which the selection of substrate materials is also a key link.

Currently, there are four main types of substrate materials commonly used in electronic packaging: a polymer substrate; a metal substrate; a composite substrate; ceramic substrates. The ceramic substrate material is widely used in electronic packaging substrate for its advantages such as high strength, good insulation, good thermal conductivity and heat resistance, small thermal expansion coefficient and good chemical stability.

Ceramic-Substrate

Ceramic packaging substrate materials mainly include aluminum oxide, beryllium oxide, and aluminum nitride. At present, alumina ceramic is the most mature ceramic packaging material, which is widely used for its good thermal shock resistance and electrical insulation, and mature manufacturing and processing technology.

The United States, Japan, and other countries have developed a multilayer ceramic substrate, making it a widely used high-tech ceramics. At present, the ceramic substrate materials used include alumina, beryllium oxide, aluminum nitride, silicon carbide, and mullite.

In terms of structure and manufacturing process, ceramic substrates can be divided into high-temperature co-firing multi-layer ceramic substrates, low-temperature co-firing ceramic substrates, thick film ceramic substrates, etc.

High-Temperature Co-Fired Ceramic (HTCC)

Ceramic powder (silicon nitride powder, alumina powder, aluminum nitride powder) was first added into the organic binder, mixed evenly into paste; then the slurry is scraped into sheets with a scraper, and the slurry is formed into green slurry through the drying process; then drill the through hole according to the design of each layer, and use screen printing metal paste for wiring and hole filling; finally put the green layer overlay and at high temperature furnace (1600 ℃) for sintering.

HTTC

Due to the high sintering temperature, the choice of metal conductor materials is limited (mainly tungsten, molybdenum, manganese and other metals with a high melting point but poor electrical conductivity). The production cost of the high-temperature co-fired ceramic substrate is high, and its thermal conductivity is generally in the 20 ~ 200 W/(m•℃) (depending on the ceramic powder composition and purity).

Low-Temperature Co-Fired Ceramic (LTCC)

The preparation process of low temperature co-firing ceramic substrate is similar to that of high-temperature co-firing multilayer ceramic substrate. The difference lies in the low temperature co-firing ceramic substrates in the alumina powder mixed with mass fraction 30% - 30% of the low melting point glass materials, lower the sintering temperature to 850 ~ 900 ℃. Therefore, gold and silver with good conductivity can be used as electrodes and wiring materials.

LTCC-package

However, on the other hand, the composite thermal conductivity is only 2~3w/(m•℃) since the low temperature co-firing ceramic substrate glass phase is contained in the ceramic material. Besides,since the low temperature co-firing ceramic substrate adopts the screen printing technology to make the metal circuit, the alignment error may be caused by the net problem; Furthermore, the shrinkage ratio of multilayer ceramic laminated sintering is different, which affects the yield.

In practical production, thermal or conductive holes can be added in the patch area to improve the thermal conductivity of the low-temperature co-fired ceramic substrate, but the disadvantage is that the cost will increase. In order to expand the application field of the ceramic substrate, multilayer laminating and co-firing technology are generally adapted to produce a multilayer structure with the cavity, which meets the requirements of airtight encapsulation of electronic devices and is widely used in the fields with a harsh environment such as aerospace and high-reliability requirements such as optical communication.

Thick film ceramic substrate

Compared with high-temperature co-firing multilayer ceramic substrate and low temperature co-firing ceramic substrate, thick film ceramic substrate is a post-fired ceramic substrate. The preparation process is to coat the metal paste on the surface of the ceramic substrate with the screen printing technology firstly, they can be prepared after drying and high-temperature sintering (700 ~ 800 ℃).

Sample-of-thick-film-ceramic-substrate

Metal pastes are generally composed of metal powders, organic resins, and glass powders. The thickness of the sintered metal layer is 10~20μm with a minimum line width of 0.3mm. Due to mature technology, simple process and low cost, thick film ceramic substrate has been applied in electronic packaging with low requirements for graphic accuracy.

About the author

Chin Trento

Chin Trento holds a bachelor’s degree in applied chemistry from the University of Illinois. His educational background gives him a broad base from which to approach many topics. He has been working with writing advanced materials for over four years in Stanford Advanced Materials (SAM). His main purpose in writing these articles is to provide a free, yet quality resource for readers. He welcomes feedback on typos, errors, or differences in opinion that readers come across.

REVIEWS
{{viewsNumber}} Thought On "{{blogTitle}}"
{{item.created_at}}

{{item.content}}

blog.levelAReply (Cancle reply)

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *
{{item.children[0].created_at}}

{{item.children[0].content}}

{{item.created_at}}

{{item.content}}

blog.MoreReplies

LEAVE A REPLY

Your email address will not be published. Required fields are marked*

Comment
Name *
Email *

Related News & Articles

MORE >>
Calcium Copper Titanate Powder: Properties and Applications

Calcium Copper Titanate (CCTO) powder, with the chemical formula CaCu₃Ti₄O₁₂, is a remarkable ceramic material known for its unique electrical properties. This high-dielectric material has attracted significant attention in recent years for its potential in advanced electronics and energy storage applications.

READ MORE >
Essential Electronic Materials: Part 3 – Germanium

Germanium (Ge) is a semiconductor material with unique physical and electrical properties, making it a valuable component in various high-tech applications.

READ MORE >
Common Sulfides and Their Applications

Sulfides have long played vital roles across diverse industries.

READ MORE >
Leave A Message
Leave A Message
* Your Name:
* E-mail:
* Product name:
* Phone Number:
* Message: